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TABLE I 
ALGORITHMIC PERFORMANCE (CPU s) 

Size kth Best Grid Search Penalty Method 

(3,774) 59.23 12.17 8.76 
(5 ,  10,6) 127.55 33.41 21.85 
(6, 14,8) 111.74 57.29 44.19 
(8,17,10) 186.23 74.87 74.01 
(15,30,20) 1200.87 129.33 119.52 

Step I a + KwoA = a = 1 
b + K d = b  = 3  

Thus argMax { x  + 3y: ( x ,  y) E 2) 
= X ( W o ,  K = O )  = 10, ~ ( w O ,  0) = 14. 

Step 2 [p - Ax(w0.0)l‘ = [0, -4, 1, 28, 281 
Thus argMin {-4w2 + w3 + 28w4 + 28w5) 

= W * ( W O ,  0)‘ = (0, 1.5,0,0, 0). 
Step 3 x(w0)  = -6 

W: = (0, 1.5,0,0, 0) 
i = 1, Go to Step 1. 

Iteration 2 
Step I a + K w { A  = U  = 1 

b + K d  = b = 3  
Thus X ( W I ,  0) = 10, ~ ( w I ,  0) = 14. 

Step 2 remains unchanged 
Step 3 x ( w l )  = 0 

*{x(wI), Y(WI), WI) =36 > O  
So Optimal solution NOT found. 
K = 0.1, Go to Step 1. 

Iteration 3 
Step 1 a + K w { A  = 1.15 

b + K d  =2.7 
x ( w ~ ,  0.1) = 10, ~ ( w I ,  0.1) = 14. 

Step 2 remains unchanged 
Step 3 remains unchanged 

K = 0.2, Go to Step 1. 
Itemtion 4 

Step 1 a + K w { A  = 1.30 
b + K d  = 2.40 

x ( w ~ , O . ~ ) =  1 6 , y ( ~ l , 0 . 2 ) = 1 1 .  
Step 2 [p - A x ( w l ,  0.2)]‘ = [6, -10, -11,22, 341 

Step 3 x ( w l ,  0.2) = -18 

Go to Step 1. 
Iteration 5 

Step I a + Kw:A = 2.2 
b + K d  = 2.4 

Thus W * ( W I ,  0.2)‘ = (0, 0 , 3 , 0 , 0 )  

Thus W: = W * ( W I ,  0.2)’ = ( O , O ,  3 , 0 , 0 )  

x ( w ~ ,  0.2) = 16, y(w2,0.2) = 11. 
Step 2 remains unchanged 
Step 3 x ( w 2 ,  0.2) = 0. 

*(W2,0.2) = 0 
Thus optimality is reached 
Optimal solution is x = 16, y = 11. 

The optimal solution from our method is the same for this problem as 
that obtained by Bialas and Karwan [5]. The total number of iterations, 
including those required to solve the linear programs was 28. 

Table I provides the results of a computational exercise of running 
50 randomly selected problems of five different sizes for each method. 
The. size of the problem is denoted (nl , n2 , m) where nl and n2 stand 
for the dimension of the leader’s and follower’s decision vectors, re- 
spectively, and m is the number of constraints. The problems were run 
on an ATT PC6300+ microcomputer with Intel 80286 microprocessor, 
and 80287 math coprocessor. Each linear program was solved using the 
LINDO package, and Pascal programs linked the different components 
of the iteration together. The penalty function method proposed in this 
note marginally outperformed Bard’s [2] grid search method and easily 

outperformed the kth best method [5]. In a companion paper [14], we 
provide an algorithm to find global optimal solutions for these problems. 
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Application of Lyapunov hnctionals to Studying 
Stability of Linear Hyperbolic Systems 

MARIUSZ ZIOLKO 

Abstmct-The Lyapunov functional method is used to prove the sta- 
bility conditions for Cauchy problems and initial-boundary value prob- 
lems if the system is described by a set of linear first-order partial 
differential equations of the hyperbolic type. Although the considered 
system is linear, it is possible to obtain necessary and sufficient con- 
ditions for stability only when matrices in differential equations and 
boundary conditions have some special properties. 

I. INTRODUCTION 
The stability of a system described by a set of first-order partial differ- 

ential equations of hyperbolic type is an interesting problem in control 
theory and arises in stability t h e o j  of numerical methods for hyperbolic 
systems. Gumburger [2] considered the stability of initial-boundary value 
problems for a system consisting of two equations. The application of 
the Lyapunov functional method to stability of linear hyperbolic systems 
with more than two equations leads to the searching for hnctionals with 
diagonal matrices. The questions of whether or not there exists a positive 
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diagonal matrix G such that d G + G D  < 0 or 9 GS - G < 0, do not 
have a simple answer. The characterization of the class of matrices D 

or a set of necessary conditions. Although the Khalil [4] algorithm gives 
a definite answer to the first question, it is difficult to use this algorithm, 
especially if matrix D has high dimension. These difficulties enable us to 
give necessary and sufficient conditions for stability of linear hyperbolic 
systems only in some special cases. 

( l ) ,  (4), we take 

and S which have these properties is either a set of sufficient conditions X b ( t )  = X , t  x , ( t )  = 1 +Xl t ,  (11) 

while for the initial-boundary value problem ( 1 ) ,  (4), (6 )  

Xb(t) = o  x , ( t )  = 1 .  (12) 

The time rate of change of Lyapunov functions for initial-boundary value 
problem ( l ) ,  (4), (6)  is given by 

II. THE HYPERBOLIC SYSTEMS 

Consider the canonical form of this linear hyperbolic system consisting y~ (DTG + G D ) ~  dx  - y~ A G ~ I ;  
of first-order partial differential equations 

+ l l y T ( A G  - G A ) x d x .  dY ( 1 3 )  

where A and are 
generality, A is taken to be the diagonal form 

real and constant matrices, Without of The first derivative of the energy functional for the Cauchy problem is 
obtained by using the Leibnitz pattern. Taking into account the equation 
( 1 )  and integrating by parts, we finally obtain 

in such a way that elements on the diagonal fulfill the inequalities 

+ o o < X ~ ~ X ~ I . . . I X ~ < O < X ~ + ~  < A p + , < . . .  <X,<OO. 

( 3 )  

If we prescribe C1 continuous initial values 

Y ( X ,  0) = Y O ( X )  0 I x I 1 (4) 

the solution y :  q -t R" of Cauchy problem ( l ) ,  (4) is uniquely (cf. [ l ] )  
determined for 

Q = { ( x , t ) : 0 5 t 5 1 / ( X n  - X , ) , X , t < x  < _ l + h , t } .  ( 5 )  

Additionally, we can prescribe boundary conditions 

ay 
dX yT(AG -CA)- dx.  

To establish the sign of d E / d t  we must make an additional assumption. 
If matrix G is diagonal, then matrices A and G commute, i.e., CA = 
AG, and the last bilinear segments of (13) and (14) vanish. This restric- 
tion for matrix G makes certain that the necessary and sufficient con- 
ditions for asymptotic stability can be obtained if we assume a certain 
"symmetry" of the boundary value problem. 

Taking into account that CA = AG and substituting boundary condi- 
tions (6)  to ( 1 3 ) ,  we obtain 

where the unknown vector y ( x ,  t )  E R" is divided into two parts: 
y - ( x ,  t )  E RP and y + ( x ,  t )  E RnPP corresponding to the partition of 
A, and So, SI are fixed (n - p ) * p  and p*(n - p )  matrices, respectively. 
The solution of initial-boundary value problem ( l ) ,  (4), (6)  is uniquely 
(cf. [ l ] )  determined for 

$ = l l y T ( D T G  + G D ) y d x  

y"(1, t ) [G+A+ + S T G - A - S l ] y + ( l ,  t ) .  (17) 
III. THE ENERGY FUNCTIONAL FOR HYPERBOLIC SYSTEMS 

The linear homogeneous dynamic system ( 1 )  is asymptotically stable 
if E( t )  = lly112 + 0 as t --* CO. The main problem consists of finding a 
monotonic norm. It is well known that for a system described by a set 
of ordinary differential equations 

dy = D y  
dt 

we can always find constant positive defined matrices G such that the 
energy functional 

a t )  = Ilrll; = YTGY (9) 

is monotonic. 
The energy functional for the system ( 1 )  can be defined as 

G -  and G +  are the partitions of G, similarly, like A- and A+, are the 
partitions of matrix A. 

The time rate of change of the energy functional ( 1 5 )  is divided into 
two parts: (16) and (17). The first part depends on matrix D and the 
second depends on matrices SO and S I .  Matrix D is the coefficient of 
differential equation ( 1 ) .  This equation describes the dynamics of a sys- 
tem for all x which belong to the interior of segment [0, 11. That is why, 
if there exists a positive definite diagonal matrix G such that the inequal- 
ity dE' ldt  < 0 holds for every t 2 0 and every nonzero initial condition, 
we call the initial-boundary value problem ( l ) ,  (4), (6) asymptotically 
interior stable. Matrices SO and SI describe the properties of the solu- 
tion for the boundaries of segment x E [0, 1 1 .  For this reason, we call 
the problem ( l ) ,  (4), (6)  asymptotically boundary stable if there exists a 
positive definite diagonal matrix G such that the inequality d@ / d t  < 0 
holds. 

(10) 

where G is a fixed positive definite n x n matrix. For Cauchy problem 

IV. INTERIOR STABILITY OF THE INITIAL-BOUNDARY VALUE PROBLEM 
For the reasons mentioned above, we must limit our considerations to 

the cases when matrix G in functional (10) is diagonal. It is easy to notice 
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that, if there exists a diagonal positive matrix G such that dE' / d t  < 0 for 
all t 2 0 and arbitrary yo@) # 0, then WG + G D  < 0.  This quadratic 
form is negative definite for positive matrix G only if all real parts of 
eigenvalues of matrix D are negative. It is also easy to verify that if all 
eigenvalues of matrix D +fl are negative, then we can take G equal to 
the unit matrix and obtain d E  / d t  < 0 for every y f 0. If we assume, 
additionally, that for this case, matrix D is symmetric, then we obtain 
not only sufficient but also necessary conditions for interior stability. This 
idea can be developed for a much larger class of matrices D .  

Theorem I: If matrix D is symmetrizable by a diagonal positive def- 
inite matrix, e.g., P D  = D T K Z ,  then initial-boundary value problem 
( l ) ,  (4), (6) is interior stable if and only if all eigenvalues of matrix D 
are negative. 

Proof: For a symmetrizable matrix D we have KDK-I = 
K - I  DT K .  It follows that KDK - I  is a symmetric matrix and all eigen- 
values of D are real. Substituting G = 

yT(GD +DTG)y  = 2qTKDK-'q. (18) 

This quadratic form is negative definite if and only if all eigenvalues of 
matrix D are negative. 

and y = K-I q ,  we obtain 

V. B~UNDARY STABILITY OF A MIXED PROBLEM 
Matrices SO and SI determine the influence of boundaj  conditions 

for a solution of hyperbolic equations. In particular, the boundary wave 
reflections are described by these matrices. Reflections which increase 
energy can provide instabilization of the system. Gumburger and Plem- 
mons [3] have presented necessary and sufficient conditions for the ma- 
trices So and SI for the energy conserving norm, i.e., dEb / d t  = 0.  

The influence of boundary conditions for the time rate of change of 
Lyapunov functional (10) is given by (15), (17). The hyperbolic system 
is boundary stable if there exists a diagonal and positive definite matrix 
G such that dEb/d t  < 0 for every t 2 0 and arbitrary y not equal to 
zero simultaneously for both boundaries. It follows from this definition 
that for a boundary stable system, two inequalities for quadratic forms 
are fulfilled 

S:G+A+So < -G-A-  

ST(-G-A-)SI < G+A+.  (19) 

(SOSI)~G+A+SOSI -G+A+ < 0.  (20) 

Substituting - G-A- for $G+A+So into the second inequality, we 
obtain 

If we take for a discrete system 

the energy functional 

then inequality (20) is equivalent with inequality 

En+I -E,, < 0.  (23) 
This remark has a simple physical interpretation. The disturbances trav- 
eling between edges reflect from boundaries at discrete times. The matrix 
product SOSl is a composition of two reflections: first, from boundary 
x = 1 and next, from boundary x = 0. It is well known that inequality 
(20) can be fulfilled by a positive definite matrix G+ A+ only if all mod- 
ules of eigenvalues of matrix SOS, are less than 1 .  We obtain the identical 
conclusion for matrix product &SO. This case denotes reflection from 
boundary x = 0, at first, and then from boundary x = 1 .  

Theorem 2: If the boundary conditions (6) fulfill the postulate of 
symmetribility of matrix 

s=(s", 3 (24) 

by a diagonal positive definite matrix, then initial-boundary value prob- 
lem ( l ) ,  (4), (6) is asymptotic boundary stable, if and only if all eigen- 
values of matrix SOS, or equivalently, SI SO, are less than 1 .  
hf: Condition (17) for the boundary stability can be written in 

matrix notation 

yT(ST lGAlS - ICAl)y < 0 (25) 

where y = 
of all elements of matrix, i.e., 

(0, t )  y+T ( 1 ,  t)IT and I . I denotes the absolute value 

lGAl = G+:+) ' 

For a symmetrizable matrix S we have KSK-I = K- 'STK,  that is 
KSK-I is a symmetric matrix. It follows that all eigenvalues of matrix 
S are real. Substituting [CAI = P and q = K y ,  we obtain condition 
(25) for the boundary stability in the form 

(26) 

This Rayleigh's quotient is less than 1 for arbitrary q + 0, if and only if, 
all modules of eigenvalues of the matrix S are less than 1 .  If h denotes 

eigenvalue of matrix S ,  and y = (;:) is its block eigenvector, then 

tlT(KSK-l)Ztl < 1 .  
vT tl 

-AI SI 

It follows that 

(27) 

SOSIYZ = A2y, 

SISOYI = h2Yl, (28) 

Symmetribility of matrix S means that there are positive definite diag- 
i.e., Xz is an eigenvalue of matrices SOSl and SI&. 

onal matrices G+ and G- such that 

SCff+Ac = -G-A-SI. (29) 

This condition can be,fulfilled only if each element of matrix St and 
element of matrix SI situated in the same place have common properties. 
They must have the same sign or must be both equal to zero. Such 
a restriction is not fulfilled by a great number of boundary conditions 
for equations of practical importance. For these cases, it is possible to 
formulate only sufficient conditions for boundary stability. 

Theorem 3: The mixed problem ( l ) ,  (4), (6) is boundary stable if 
there exists a diagonal nonsingular matrix K such that KS = 9 K and all 
modules of eigenvalues of matrix K-' IKIS, or equivalently S1RIK-l , 
are less than 1. 

Proof: It is always possible to find such a diagonal matrix J that 
lKl = JKJ .  Elements of matrix J have real value 1 or imaginary value 
- j .  The matrices K-O and J are complex, but their product K-O" J 
is a real diagonal matrix. If [CAI = IKI and y = K-05Jq, then the 
condition (25) for the boundary stability takes the form 

qT(K-o.5JSTJKJSJK-05 - I )v  < 0. (30) 

It results from assumption KS = ST K that matrix K-O JSJK-O is 
symmetric. Therefore, inequality (30) is satisfied for every nonzero real 
vector q if all modules of eigenvalues (which are real) of a complex 
matrix JSJ are less than 1. Now, if y denotes an eigenvector of matrix 
JSJ and X is its eigenvalue, then (JSJ - AI)y = 0. It follows that 
( J 2 S  - AI)Jy = 0 and (SJ2 - AI).-'y = 0; that is, matrices JSJ and 
J2S = K-I lKlS and SJz = SIR IK-' have the same eigenvalues. 

VI. STABILITY OF THE CAUCHY PROBLEM 

Under the assumption that matrix G is diagonal, the first derivative 
(14) of the energy functional for Cauchy problem ( l ) ,  (4) takes the form 

e = y T ( l  + X l t ,  t)[X,I -A]Gy( l  +hit, t )  d t  

-. - -7 
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The diagonal matrices (AI I - A)G and (A - A,, I)G have one element on 
the diagonal equal to zero and the other elements are negative. 

Theorem 4: The stability of the Cauchy problem is equivalent to the 
interior stability for the initial-boundary value problem. 

Proof: Matrices A I  I - A and A - A, I are negative semidefinite. 
It makes that negative definite matrix fl G + GD creates the sufficient 
condition for the stability of the Cauchy problem, similarly, like it is for 
the interior stability. 

The necessary conditions are also identical for both problems. If the 
Cauchy problem is stable, then dEldt  < 0 for all nonzero initial values. 
It also must deal with all initial conditions for which the two first quadratic 
forms in (31) are equal to zero. Such initial conditions exist and can be 
determined if the solutions along the characteristic defined by AI and A,, 
are assumed. y l  ( 1  + Alt, t )  and y,,(A,,t, t )  can be taken arbitrarily and 

y2(Ant , t )  = . . . = Y n - l ( A , t , t )  =O.ItfollowsthatmatrixflG+GD 
must be negative definite. 

VII. EXAMPLE 
Consider the distributed electric network described by the equation 

y2( 1 + hit ,  t )  = y , ( l  + Ait, t )  = .. = yn(l + h i t ,  t )  = yi(A,, t ,  t )  = 

(L)+(y  f ) (k)=(-02 (I (32) 

at c ax -. - _.. - 
where i denotes current and U voltage. R ,  L ,  F ,  C are distributed pa- 
rameters of the network (resistance, inductance, conductance, and capac- 
itance). The boundary conditions are described by the following equa- 
tions: 

(R2 - 1) = o  

(33) 

(34) 

matrix G has the general form 

G = ( l  ) 
g /  

Only if parameter g satisfies inequalities 

(41) 
(m-my (m+m)2 

(m-m)2 (m + < g  < 

then dEi /d t  < 0 holds at each time t for every yo # 0. 
The system under consideration is also boundary stable because 

The condition dEb ld t  < 0 is fulfilled only if parameter g takes values 

From inequalities (41) and (43), we conclude that it is possible to find g 
such that dEb ld t  < 0 and dEi ld t  < 0 hold at each time, simultaneously. 
This property does not occur in general. 
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where R I ,  R2 are resistances at the boundaries of the network. By trans- 
formation (1>=( VE f i ) y  -a a 
the considered system can be taken to canonical form 

1 
~ m 

(35) 

Relationship Between the Trace and Maximum Eigenvalue 
Norms for Linear Quadratic Control Design 

M. J .  GRIMBLE 

E 
C 
R -2) F Y 

(39) 

The eigenvalues of matrix D are negative: d l  = - R / L ,  d2 = - F / C .  
It means that the system is interior stable. 

The considered system consists of only two differential equations. It is 
easy [5 ]  to find the Lyapunov functional (10) for such systems. Diagonal 

Abstmct-The use of a sum of squares H2 norm is considered for 
optimal control system design. The relative advantages of the LQG 
(trace norm) and the H m  (sup norm) cost functions are discussed. The 
relationship between the resulting solutions is established and it is shown 
that an LQG controller also minimizes a sum of squares norm for a 
system with larger disturbances. 

R‘ x m ( z - ’ )  

NOTATION AND MATHEMATICAL PRELIMINARIES 

Eigenvalues, singular values. 
Maximum eigenvalue, maximum 
singular value. 
r x m  
rational transfer-function matrix in 
2-1. 
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