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ABSTRACT
The paper presents modifications of the well know Levenshtein metric. The suggested improvements result in
better automatic speech recognition when Levenshtein metric is applied to compare words from a dictionary
and speech recognition hypotheses. It allows to evaluate hypotheses and to choose the word which was
actually spoken.

INTRODUCTION

An automatic speech recognition (ASR) system needs several layers to work efficiently. One
of them is responsible for choosing a word using phoneme hypotheses.

Our acoustic recognition is based on a non-uniform phoneme segmentation and Levenshtein
distance [1] (known also as an edit metric) from a sequence of phoneme hypotheses to the pho-
netic transcription of a word stored in a selected dictionary. This is a part of the system which in
this solution is the replacement for word decoder based on hidden Markov model (HMM) [2] fre-
quently used in the standard speech recognition systems [3]. The phoneme segmentation methods
are already established and described [4, 5].

The acoustic classifier provides a list of likelihood-ranked phoneme hypotheses with probabil-
ities, for each frame. This ranking is used in the algorithm described in this paper to calculate
modified weighted Levenshtein distance. It results in comparing a phone sequence hypothesis and
a word from a dictionary. Finally, the N -best list of word hypotheses are chosen.

The paper is organised as follows. The second section describes the standard weighted Lev-
enshtein distance as it is commonly used in ASR. The third section presents our modification
and how it can be applied in a word decoder. The fourth section describes the experiment and
results on speech recognition. The paper is summed up with conclusions.

LEVENSHTEIN DISTANCE

Levenshtein distance is frequently used in ASR [6, 7]. It measures the number of differences
between two sequences of well defined symbols or characters (letters for example). The Leven-
shtein distance between two sequences is given by the minimum number of operations needed to



Figure 1. Phonetic hypotheses for words ‘Józef’ and ‘Jerzy. The correct transcriptions
are respectively /j u z e f /’ and /j e Z y/. There are 3 phoneme hypotheses in each column
with the most probable one on the top. Errors are easily corrected if secondary and
tertiary hypotheses are applied.

transform one sequence into the other, where allowed operations are: insertion, deletion, or sub-
stitution of a single symbol. In our case different operations have different weights derived from
likelihoods of the characters being modified. Our modification of this measure is described in the
next section.

Weighted Levenshtein distance (WLD) between words A and B is

WLD(A,B) = min
w
{αr(w) + βi(w) + χd(w)}, (1)

where α, β and χ are fixed weights, or operation costs and w is a sequence of operations which
change A into B, r is the number of replacements, i insertions and d deletions. In ASR, typically
A is a hypothesis and B is a phonetic transcription from a dictionary.

SPEECH MODELLING WITH MODIFIED WEIGHTED LEVENSHTEIN DISTANCE

The calculation of the WLD is conducted on phonetic transcriptions (see Fig. 1). A hypothetic
sequence from the phoneme classifier is compared with the words taken from a dictionary. The
dictionary can be of any finite size.

The values of weights of different operations are a very important detail from application point
of view. In our case, they were optimised to maximise the percentage of correct recognitions.

First, Hook-Jeeves optimisation method [8] was applied. However, it resulted in too many local
minima. This is why, a much slower, but more accurate method was used based on choosing a grid
in the space of possible parameters. Each point of the grid was checked. Then the best point
of the grid was chosen as the set of parameters. It did not allow find the global minimum but it
allowed to find a set of parameters which are very close to the global minimum. We assumed that



modification cost depends on the obtained data. The weights depend on features and outputs of
the classification algorithm.

The acoustic classifier provides a list of best N phoneme hypotheses in each k = 1..K time
frame with probabilities pnk, where n = 1..N . A substitution cost lnk is higher, if a substituting
phoneme is further positioned on the list of other hypotheses. It is then calculated as

lnk = δ [ln(p1k)− ln(pnk)], (2)

where δ is a parameter. All probability values in the system are implemented as natural logarithms
to allow easier computations.

Insertion cost hk = − ln(pins) = const can be described as a cost of performing pins-probable
insertion operation on any k-th position. Probability of such operation can be derived either em-
pirically or from the speech frame versus phoneme rate (undersegmentation rate).

Each deletion cost g can be described as a cost of performing a deletion operation on a k-th
segment, classified as a particular phoneme with a maximal probability p1k, where

gk = ln(p1k)− ln(pdel), (3)

and pdel is an empirically optimised deletion probability.
It was found experimentally (by checking results for various, different N ) that N = 5 allows

the best possible performance for the given acoustic classifier.
The other parameter, δ = 10, was found using optimisation method. lnk = 1 is taken arbitrary

if a substituting phoneme is not on the list of N hypotheses (in other words n > N ).
Then we can present a modified weighted Levenshtein distance (MWLD) as

MWLD(A,B) = min
w
{α

K∑
k=1

lnkrk(w) + β

K∑
k=1

hki(w) + χ

K∑
k=1

gkd(w)} (4)

where rk(w) = 0 if there is no substitution on k-th position and rk(w) = 1 if there is a substitution
on k-th position in sequence w of operations to change A into B, and i(w), d(w) define insertions
and deletions respectively. Parameters α = 3, β = 3 and χ = 1.9 are weighting functions of
overall replacement, insertion and deletion costs.

It is important to maintain proper ratio

βhk + χgk > αlnk (5)

of these costs, in such a way, that each substitution is more likely than deletion-insertion sequence
with the same output and

χgk > −α ln(p1k). (6)

EXPERIMENT AND RESULTS

Several experiments were conducted to check various possible sets of parameteres and options.
The tests were executed on 100 recordings, different then those used for acoustic classifier training.
The speaker was also different, however, a process of speaker adaptation was conducted. Each
recording was a complete sentence and phonetic transcriptions of those sentences were used as
dictionary entries. For each of it, the mentioned algorithm was applied and several evaluations
described in the next section were calculated. Apart from the MLWD, dynamic time warping
(DTW) method [2] was used as well and compared.

The results were evaluated in four different ways to compare several parameteres and strategies.
The first evaluation criterion is the percentage of correctly recognised sentences. The second
one is the percentage of recordings for which the correct sentence is on the list of five strongest



 

Figure 2. Percentage of correct sentences in the 5 best list of hypotheses depending on
the value of δ

hypotheses. The third criterion is the average ranking of the correct sentence on the list of all
hypotheses. The fourth one is a distinction factor

df =

1

M

M∑
m=1

ln(p(A = Bm))

ln(p(A = Bc))
(7)

where M is a size of a dictionary, Bm is an mth word from the dictionary and Bc is a correct
recognition and p(A = Bm) is a probability that sequence A is word Bm.

Table 1. Recognition results

method perfect recognition in 5-best avearge dist. distinction factor
DTW 70% 87% 6.7 1.03

MLWD 85% 94% 3.5 1.4

Table 1 shows that MLWD method outperformed DTW in all 4 established evaluation criteria
for the test corpus. MLWD is very well tuned to ASR tasks, so the results are not surprising, even
though the DTW method is a well balanced and used in applications method as well. Fig. 2 shows
the influence of the value of parameter δ on recognition (percentage of test examples for which
the correct sentence is in the 5-best list of hypotheses). It points that δ = 10 leads to the best
recognition rate. The parameter sets the importance of substitution cost on the position of correct
phoneme hypothesis on the list of all phoneme hypotheses of the particular time frame. It is one
of the major modification of standard WLD applied by us.

CONCLUSIONS

Presented MLWD is a very good method to compare acoustic hypotheses for speech recognition
system with words from a dictionary. It allows to calculate distances between words to maximise
the number of correct recognitions. In this way, speech decoding can be conducted with 85% of
accuracy on an average dictionary ASR task.
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